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Abstract
The modified Korteweg–de Vries hierarchy with an integral type of source
(mKdVHWS), which consists of the reduced AKNS eigenvalue problem with
r = q and the mKdV hierarchy with an extra term of the integration of a
square eigenfunction, is investigated. We propose a method to find the explicit
evolution equation for the eigenfunction of the auxiliary linear problems of
the mKdVHWS. Then we determine the evolution equations of scattering data
corresponding to the mKdVHWS, and solve the equation in the mKdVHWS
by inverse scattering transformation.

PACS numbers: 02.30.Ik, 05.45.Yv

1. Introduction

The nonlinear Schrödinger equation with an integral type of source (NLSEWS) is relevant to
some problems of plasma physics and solid-state physics [1]. The NLSEWS in some case
was studied by so called ∂̄-method in [1], and it was stated that this NLSEWS could not
be integrated by the classical inverse scattering method. Later it was shown in [2] that the
NLSEWS can be integrated by the inverse scattering method for the Dirac operator. The key
point of the application of the inverse scattering method to integration of the NLSEWS in [2] is
the use of the determining relations playing the same role as different operator representations
of the Lax type of nonlinear evolution equation integrable by various modifications of this
method. Just using the determining relations Mel’nikov obtained the evolution equations for
all the scattering data of the Dirac operator corresponding to NLSEWS. A similar method was
used to investigate the Korteweg–de Vries equation with an integral type of source (KdVWS)
in [3]. The reason for the use of the determining relations in [2,3] is that the evolution equation
of the eigenfunction for the eigenvalue problem corresponding to the NLSEWS and KdVWS
was not found. In fact, the establishment of these determining relations and the derivation of
the evolution equations for all scattering data in [2,3] are quite complicated and require some
skill.
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In this letter we investigate the new modified Korteweg–de Vries hierarchy with an integral
type of source (mKdVHWS), which consists of the reduced AKNS eigenvalue problem with
r = q and the mKdV hierarchy with an extra term of the integration of a square eigenfunction.
We first present a method to construct the zero-curvature representation for the mKdVHWS by
finding the explicit evolution equation for the eigenfunction of the auxiliary linear problem for
the mKdVHWS. Then we present a way to determine the evolution equation for the scattering
data corresponding to the mKdVHWS, which implies that the mKdVHWS can be integrated
by the inverse scattering method. Compared with the method using the determining relation
in [2, 3], the method proposed in this letter for determining the evolution equation of the
scattering data is quite natural and simple. This general method can be applied to other (1 + 1)-
dimensional soliton equations with an integral type of source.

2. The mKdV hierarchy with an integral type of source

Consider the reduced AKNS eigenvalue problem for r = q [4](
φ1

φ2

)
x

= U

(
φ1

φ2

)
, U =

( −λ q

q λ

)
. (2.1)

The adjoint representation of (2.1) reads [5]

Vx = [U, V ] = UV − V U. (2.2)

Set

V =
∞∑
i=0

(
ai bi

ci −ai

)
λ−i . (2.3)

Equation (2.2) yields

a0 = −1, b0 = c0 = a1 = 0, b1 = c1 = q

a2 = 1
2q2, b2 = −c2 = − 1

2qx, . . . ,

and in general

b2m+1 = c2m+1 = Lb2m−1, b2m = −c2m = − 1
2Db2m−1,

a2m+1 = 0, a2m = 2D−1qb2m

(2.4)

where

L = 1
4D2 − qD−1qD, D = ∂

∂x
, DD−1 = D−1D = 1.

Set

V (2n+1) =
2n+1∑
i=0

(
ai bi

ci −ai

)
λ2n+1−i (2.5)

and take (
φ1

φ2

)
t2n+1

= V (2n+1)

(
φ1

φ2

)
. (2.6)

Then the compatibility conditions of equations (2.1) and (2.6) give rise to the mKdV
hierarchy [4]

qt2n+1 = −2b2n+2 = Db2n+1 = D
δH2n+1

δq
, n = 0, 1, . . . , (2.7)
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where

H2n+1 = 2a2n+2

2n + 1
.

Using (2.1), we have

δλ

δq
= φ2

1 − φ2
2 , L(φ2

1 − φ2
2) = λ2(φ2

1 − φ2
2). (2.8)

As proposed in [2, 3, 7, 8], the mKdV hierarchy with integral type of source is defined by

qt2n+1 = D

[
b2n+1 +

∫ ∞

−∞
C(t, ζ )(φ2

1(x, t, ζ ) − φ2
2(x, t, ζ )) dζ

]
(2.9a)

φ1,x = −iζφ1 + qφ2, φ2,x = qφ1 + iζφ2 ζ ∈ (−∞, ∞); (2.9b)

we assume q(x, t2n+1) tends rather quickly to zero as x → ±∞. According to this condition
we assume that

φ1(x, t, ζ ) ∼ a exp(−iζx), φ2(x, t, ζ ) ∼ b exp(iζx), x → −∞ (2.10)

where C = C(t, ζ ), a = a(t, ζ ) and b = b(t, ζ ) are complex functions of t � 0 and
ζ ∈ (−∞, ∞). Moreover we assume that the functions C, a and b are chosen so that the
right-hand side of equation (2.9) determines the function absolutely integrable over x along
the whole real axis. One can easily verify that the requirement will certainly be satisfied if the
functions E and � of the form argued in [2]

E = |C(t, ζ )|[|a(t, ζ )| + |b(t, ζ )|]2 � =
∣∣∣∣ ∂

∂ζ
[C(t, ζ )a2(t, ζ )]

∣∣∣∣ +

∣∣∣∣ ∂

∂ζ
[C(t, ζ )b2(t, ζ )]

∣∣∣∣
at any t � 0 satisfy the condition∫ ∞

−∞
[E(t, ζ ) + �(t, ζ ) + �2(t, ζ )] dζ < ∞.

3. The Lax representation

Following the method proposed in [6–8], in order to find the zero-curvature representation
for (2.9), we first consider

D

[
b2n+1 +

∫ ∞

−∞
C(t, ζ )(φ2

1(x, t, ζ ) − φ2
2(x, t, ζ )) dζ

]
= 0 (3.1a)

φ1,x = −iζφ1 + qφ2, φ2,x = qφ1 + iζφ2 ζ ∈ (−∞, ∞). (3.1b)

We can obtain the Lax representation for (3.1) by using the adjoint representation (2.2).
According to (2.4), (2.8) and (3.1), we may define

ãi = ai, b̃i = bi, c̃i = ci, i = 0, 1, . . . , 2n,

b̃2n+2m+1 = c̃2n+2m+1 = Lb̃2n+2m−1 = −
∫ ∞

−∞
(iζ )2mC(t, ζ )[φ2

1(x, t, ζ ) − φ2
2(x, t, ζ )] dζ

b̃2n+2m+2 = −c̃2n+2m+2 = − 1
2Db̃2n+2m+1 = −

∫ ∞

−∞
(iζ )2m+1C(t, ζ )[φ2

1(x, t, ζ ) + φ2
2(x, t, ζ )] dζ

ã2n+2m+2 = 2D−1qb̃2n+2m+2 = −2
∫ ∞

−∞
(iζ )2m+1C(t, ζ )φ1(x, t, ζ )φ2(x, t, ζ ) dζ

ã2n+2m+1 = 0, m = 0, 1, . . . .
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Then

N(2n+1) =
(

A(2n+1) B(2n+1)

C(2n+1) D(2n+1)

)
≡ λ2n+1

∞∑
k=0

(
ãk b̃k

c̃k −ãk

)
λ−k +

(
θ 0
0 θ

)

where θ is some constant, and

A(2n+1) =
2n∑

k=0

akλ
2n+1−k + θ +

∫ ∞

−∞

2(iζ )(iη)C(t, η)φ1(x, t, η)φ2(x, t, η)

(iζ )2 − (iη)2
dη

B(2n+1) =
2n∑

k=0

bkλ
2n+1−k

+
∫ ∞

−∞

iζ(iζ − iη)C(t, η)φ2
2(x, t, η) − iζ(iζ + iη)C(t, η)φ2

1(x, t, η)

(iζ )2 − (iη)2
dη

C(2n+1) =
2n∑

k=0

ckλ
2n+1−k

+
∫ ∞

−∞

iζ(iζ + iη)C(t, η)φ2
2(x, t, η) − iζ(iζ − iη)C(t, η)φ2

1(x, t, η)

(iζ )2 − (iη)2
dη

D(2n+1) = −
2n∑

k=0

akλ
2n+1−k + θ −

∫ ∞

−∞

2(iζ )(iη)C(t, η)φ1(x, t, η)φ2(x, t, η)

(iζ )2 − (iη)2
dη

also satisfies the adjoint representation (2.2), i.e.

N(2n+1)
x = [U, N(2n+1)], (3.2)

which, in fact, gives rise to the Lax representation of (3.1). Since (3.1) is the stationary equation
of (2.9), it is easy to find that the zero-curvature representation for the mKdVHWS (2.9) is
given by

Ut2n+1 − N(2n+1)
x + [U, N(2n+1)] = 0, (3.3)

with the auxiliary linear problems(
ψ1

ψ2

)
x

=
( −λ q

q λ

) (
ψ1

ψ2

)
=

( −iζ q

q iζ

) (
ψ1

ψ2

)
, (3.4a)

where λ = iζ and

ψ1,t2n+1 = (A(2n+1) + θ)ψ1 + B(2n+1)ψ2

≡
k=2n∑
k=0

(akψ1 + bkψ2)λ
2n+1−k + θψ1

+
∫ ∞

−∞

iζC(t, η)

(iζ )2 − (iη)2
[2(iη)φ1(x, t, η)φ2(x, t, η)ψ1

+ (iζ − iη)φ2
2(x, t, η)ψ2 − (iζ + iη)φ2

1(x, t, η)ψ2] dη,

ψ2,t2n+1 = C(2n+1)ψ1 + (−A(2n+1) + θ)ψ2

≡
k=2n∑
k=0

(ckψ1 − akψ2)λ
2n+1−k + θψ2

+
∫ ∞

−∞

iζC(t, η)

(iζ )2 − (iη)2
[(iζ + iη)φ2

2(x, t, η)ψ1 − (iζ − iη)φ2
1(x, t, η)ψ1

− 2(iη)φ1(x, t, η)φ2(x, t, η)ψ2] dη.

(3.4b)

In this way we find the explicit evolution equations of eigenfunction ψ . Indeed, this kind of
evolution equation of eigenfunction was not obtained in [2, 3].
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4. Evolution equation for the reflection coefficients

Now we can derive equations describing the evolution in time t of the S-matrix
elements. This can be performed as follows. We define the eigenfunctions f −(x, ζ ) =
(f −

1 (x, ζ ), f −
2 (x, ζ ))T , f̄ −(x, ζ ) = (f̄ −

1 (x, ζ ), f̄ −
2 (x, ζ ))T , f +(x, ζ ) = (f +

1 (x, ζ ),

f +
2 (x, ζ ))T and f̄ +(x, ζ ) = (f̄ +

1 (x, ζ ), f̄ +
2 (x, ζ ))T (here and hereafter ‘T ’ means transposition)

for equation (3.4a), and the following asymptotics are fulfilled at any ζ ∈ (−∞, ∞):

f −(x, ζ ) ∼
(

1
0

)
e−iζx, f̄ −(x, ζ ) ∼

(
0

−1

)
eiζx, as x → −∞ (4.1a)

f +(x, ζ ) ∼
(

0
1

)
eiζx, f̄ +(x, ζ ) ∼

(
1
0

)
e−iζx, as x → +∞. (4.1b)

As is known, the functions f −(x, ζ ) and f +(x, ζ ) admit an analytical continuation in the
parameter ζ into the upper half-plane Im ζ > 0, and the functions f̄ −(x, ζ ) and f̄ +(x, ζ )

admit an analytical continuation in the parameter ζ into the lower half-plane Im ζ < 0. It is
easily seen that at any real ζ ∈ (−∞, ∞) the pair of functions f −(x, ζ ) and f̄ −(x, ζ ) forms
a fundamental system of solutions to (3.4a). Hence, we may define

f +(x, ζ ) = S12(ζ )f̄ −(x, ζ ) + S22(ζ )f −(x, ζ ) (4.2a)

f̄ +(x, ζ ) = S11(ζ )f̄ −(x, ζ ) + S21(ζ )f −(x, ζ ) (4.2b)

where the quantities S11 = S11(ζ ), S12 = S12(ζ ), S21 = S21(ζ ) and S22 = S22(ζ ) are
independent of x. Taking account of (4.1) and (4.2), we obtain at any ζ ∈ (−∞, ∞) the
equality

S11(ζ )S22(ζ ) − S12(ζ )S21(ζ ) = 1. (4.3)

Under the assumption that q(x, t) vanishes rapidly as |x| → ∞, we have

a0 = −1, b0 = c0 = 0, lim
|x|→∞

aj = lim
|x|→∞

bj = lim
|x|→∞

cj = 0,

j = 1, 2, . . . , 2n.

We denote the parameter θ in (3.4b) corresponding to f +(x, ζ ) by θ+ and f̄ +(x, ζ ) by θ̄+,
respectively. Substituting f +(x, ζ ) and f̄ +(x, ζ ) into (3.4b), we have

∂f +
1 (x, ζ )

∂t2n+1
=

{ 2n∑
k=0

ak(iζ )2n+1−k + θ+ −
∮ ∞

−∞

(
ζ

η − ζ
+

ζ

η + ζ

)
H(η) dη

− π(iζ )H(ζ ) + π(iζ )H(−ζ )

}
f +

1 (x, ζ )

+

{ 2n∑
k=0

bk(iζ )2n+1−k +
∮ ∞

−∞

ζ

η − ζ
H1(η) dη +

∮ ∞

−∞

ζ

η + ζ
H2(η) dη

+ π(iζ )H1(ζ ) − π(iζ )H2(−ζ )

}
f +

2 (x, t, ζ ), (4.4a)

∂f +
2 (x, ζ )

∂t2n+1
=

{ 2n∑
k=0

ck(iζ )2n+1−k −
∮ ∞

−∞

ζ

η − ζ
H2(η) dη −

∮ ∞

−∞

ζ

η + ζ
H1(η) dη

− π(iζ )H2(ζ ) + π(iζ )H1(−ζ )

}
f +

1 (x, ζ )

+

{ 2n∑
k=0

−ak(iζ )2n+1−k −
∮ ∞

−∞

(
iζ

iζ − iη
− iζ

iζ + iη

)
H(η) dη + θ+

+ π(iζ )H(ζ ) − π(iζ )H(−ζ )

}
f +

2 (x, ζ ), (4.4b)
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∂f̄ +
1 (x, ζ )

∂t2n+1
=

{ 2n∑
k=0

ak(iζ )2n+1−k + θ̄+ −
∮ ∞

−∞

(
ζ

η − ζ
+

ζ

η + ζ

)
H(η) dη

+ π(iζ )H(ζ ) − π(iζ )H(−ζ )

}
f̄ +

1 (x, ζ )

+

{ 2n∑
k=0

bk(iζ )2n+1−k +
∮ ∞

−∞

ζ

η − ζ
H1(η) dη +

∮ ∞

−∞

ζ

η + ζ
H2(η) dη

− π(iζ )H1(ζ ) + π(iζ )H2(−ζ )

}
f̄ +

2 (x, ζ ), (4.4c)

∂f̄ +
2 (x, ζ )

∂t2n+1
=

{ 2n∑
k=0

ck(iζ )2n+1−k −
∮ ∞

−∞

ζ

η − ζ
H2(η) dη −

∮ ∞

−∞

ζ

η + ζ
H1(η) dη

+ π(iζ )H2(ζ ) − π(iζ )H1(−ζ )

}
f̄ +

1 (x, ζ )

+

{ 2n∑
k=0

−ak(iζ )2n+1−k −
∮ ∞

−∞

(
iζ

iζ − iη
− iζ

iζ + iη

)
H(η) dη + θ̄+

− π(iζ )H(ζ ) + π(iζ )H(−ζ )

}
f̄ +

2 (x, ζ ), (4.4d)

where the integral
∮

is taken as the principal value, and the quantities θ+, θ̄+ will be determined
in the next section

H(η) = C(t, η)φ1(x, t, η)φ2(x, t, η),

H1(η) = C(t, η)φ2
1(x, t, η), H2(η) = C(t, η)φ2

2(x, t, η).
(4.5)

As x → −∞, we find that the following asymptotics are valid:∮ ∞

−∞

ζ

η − ζ
H1(η) dη ∼ π(iζ )C(t, ζ )a2(ζ, t)e−2iζx,

∮ ∞

−∞

ζ

η + ζ
H1(η) dη ∼ π(iζ )C(t, −ζ )a2(−ζ, t)e2iζx,

∮ ∞

−∞

ζ

η − ζ
H2(η) dη ∼ −π(iζ )C(t, ζ )b2(ζ, t)e2iζx,

∮ ∞

−∞

ζ

η + ζ
H2(η) dη ∼ −π(iζ )C(t, −ζ )b2(−ζ, t)e−2iζx .

(4.6)

Substituting (4.2) into (4.4) and using (4.6), as x → −∞, we have

∂S22(ζ )

∂t2n+1
=

{
−(iζ )2n+1 + θ+ −

∮ ∞

−∞

(
ζ

η − ζ
+

ζ

η + ζ

)
h(η) dη

− π(iζ )h(ζ ) + π(iζ )h(−ζ )

}
S22(ζ )

− {2π(iζ )h1(ζ ) − 2π(iζ )h2(−ζ )}S12(ζ ),

∂S12(ζ )

∂t2n+1
=

{
(iζ )2n+1 + θ+ +

∮ ∞

−∞

(
ζ

η − ζ
+

ζ

η + ζ

)
h(η) dη

+ π(iζ )h(ζ ) − π(iζ )h(−ζ )

}
S12(ζ ),
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∂S21(ζ )

∂t2n+1
=

{
−(iζ )2n+1 + θ̄+ −

∮ ∞

−∞

(
ζ

η − ζ
+

ζ

η + ζ

)
h(η) dη

+ π(iζ )h(ζ ) − π(iζ )h(−ζ )

}
S21(ζ ),

∂S11(ζ )

∂t2n+1
=

{
(iζ )2n+1 + θ̄+ +

∮ ∞

−∞

(
ζ

η − ζ
+

ζ

η + ζ

)
h(η) dη

− π(iζ )h(ζ ) + π(iζ )h(−ζ )

}
S11(ζ )

− {2π(iζ )h2(ζ ) − 2π(iζ )h1(−ζ )}S21(ζ ), (4.7)

where

h(η) = C(t, η)a(η, t)b(η, t) h1(η) = C(t, η)a2(η, t) h2(η) = C(t, η)b2(η, t).

One can easily see that if C = 0 or a = b = 0 then the resultant system (4.7) coincides with
those equations which appear in the case of the mKdV hierarchy without a source. Using (4.7),
we find that the reflection coefficients

R1(ζ ) = S11(ζ )

S21(ζ )
, R2(ζ ) = S22(ζ )

S12(ζ )
(4.8)

satisfy the equation

∂R1(ζ )

∂t2n+1
= 2

{
(iζ )2n+1 +

∮ ∞

−∞

(
ζ

η − ζ
+

ζ

η + ζ

)
h(η) dη − π(iζ )h(ζ )

+ π(iζ )h(−ζ )

}
R1(ζ ) − {2π(iζ )h2(ζ ) − 2π(iζ )h1(−ζ )}, (4.9a)

∂R2(ζ )

∂t2n+1
= 2

{
−(iζ )2n+1 −

∮ ∞

−∞

(
ζ

η − ζ
+

ζ

η + ζ

)
h(η) dη − π(iζ )h(ζ )

+ π(iζ )h(−ζ )

}
R2(ζ ) − {2π(iζ )h1(ζ ) − 2π(iζ )h2(−ζ )}. (4.9b)

Then, it follows from (4.9) that the evolution of the reflection coefficients R1, R2 is influenced
by the integral type of source, which is the integration of the square eigenfunctions belonging to
the continuous spectrum of the spectral problem (2.1). For the case r = q, there is no discrete
eigenvalue for the spectral problem (2.1) if the potential q = q(x, t) tends rather quickly to
zero as |x| → ∞. The evolution equations for the reflection coefficients are presented by (4.9),
which implies that the mKdVHWS can be solved by the inverse scattering method.

5. Consistency of system (4.7) and equality (4.3)

Let us now verify that system (4.7) is consistent with equality (4.3). First we calculate the
parameters θ+ and θ̄+. With (4.2) and (4.3) we get

f −(x, ζ ) = −S12(ζ )f̄ +(x, ζ ) + S11(ζ )f +(x, ζ ) (5.1a)

f̄ −(x, ζ ) = S22(ζ )f̄ +(x, ζ ) − S21(ζ )f +(x, ζ ). (5.1b)

According to (2.10) and (4.1a) we can assume(
φ1

φ2

)
= af − − bf̄ −. (5.2)

Using (5.1), (5.2) can be written down as follow:(
φ1

φ2

)
= (aS11 + bS21)f

+ − (aS12 + bS22)f̄
+. (5.3)



L290 Letter to the Editor

According to (5.3) and taking account of (4.5) and (4.1b), as x → +∞ the following asymptotic
is fulfilled:

H(ζ) ∼ I (ζ ), (5.4)

where

I (ζ ) = −C(t, ζ )[S11(ζ )S12(ζ )a2 + (S11(ζ )S22(ζ ) + S12(ζ )S21(ζ ))ab + S21(ζ )S22(ζ )b2]

= − S11(ζ )S12(ζ )h1(ζ ) − (S11(ζ )S22(ζ )

+ S12(ζ )S21(ζ ))h(ζ ) − S21(ζ )S22(ζ )h2(ζ ). (5.5)

Using (5.4), (4.4b) and (4.1b) we get

θ+ = −i(iζ )2n+1 −
∮ ∞

−∞

(
ζ

η − ζ
+

ζ

η + ζ

)
I (η) dη − π(iζ )I (ζ ) + π(iζ )I (−ζ ). (5.6)

Analoguely, using (5.4), (4.4c) and (4.1b) we get

θ̄+ = i(iζ )2n+1 +
∮ ∞

−∞

(
ζ

η − ζ
+

ζ

η + ζ

)
I (η) dη − π(iζ )I (ζ ) + π(iζ )I (−ζ ). (5.7)

Then, using (5.6) and (5.7), the system (4.7) can be written down as follows:

∂S22(ζ )

∂t
= [−2i(iζ )2n+1 − Q1(ζ ) − π(iζ )M1(ζ ) − π(iζ )M2(ζ )]S22(ζ )

− 2π(iζ )[h1(ζ ) − h2(−ζ )](ζ )S12(ζ ), (5.8a)
∂S12(ζ )

∂t
= [−Q2(ζ ) − π(iζ )M1(ζ ) + π(iζ )M2(ζ )]S12(ζ ), (5.8b)

∂S21(ζ )

∂t
= [Q2(ζ ) − π(iζ )M1(ζ ) + π(iζ )M2(ζ )]S21(ζ ), (5.8c)

∂S11(ζ )

∂t
= −2π(iζ )[h2(ζ ) − h1(−ζ )]S21(ζ ) + [2i(iζ )2n

+ Q1(ζ ) − π(iζ )M1(ζ ) − π(iζ )M2(ζ )]S11(ζ ), (5.8d)

where

Q1(ζ ) =
∮ ∞

−∞

(
ζ

η − ζ
+

ζ

η + ζ

)
I (η) dη +

∮ ∞

−∞

(
ζ

η − ζ
+

ζ

η + ζ

)
h(η) dη,

Q2(ζ ) =
∮ ∞

−∞

(
ζ

η − ζ
+

ζ

η + ζ

)
I (η) dη −

∮ ∞

−∞

(
ζ

η − ζ
+

ζ

η + ζ

)
h(η) dη,

M1(ζ ) = I (ζ ) − I (−ζ ), M2(ζ ) = h(ζ ) − h(−ζ ).

(5.9)

By virtue of (5.8), we have

∂

∂tn
[S11(ζ )S22(ζ ) − S12(ζ )S21(ζ )] = 2π(iζ )(M1(ζ ) − M2(ζ ))S12(ζ )S21(ζ )

− 2π(iζ )(h1(ζ ) − h2(−ζ ))S11(ζ )S12(ζ ) − 2π(iζ )(M1(ζ )

+ M2(ζ ))S11(ζ )S22(ζ ) − 2π(iζ )(h2(ζ ) − h1(−ζ ))S21(ζ )S22(ζ ). (5.10)

For real function r = q, it is known [4] that the eigenfunction f −(x, ζ ), f̄ −(x, ζ ), f +(x, ζ ),
f̄ +(x, ζ ) defined by (4.1) for (3.4) have symmetry relations

f̄ −(x, ζ ) =
( −f −

2 (x, t, −ζ )

−f −
1 (x, t, −ζ )

)
, f̄ +(x, ζ ) =

(
f +

2 (x, t, −ζ )

f +
1 (x, t, −ζ )

)
(5.11a)

which imply that that the S11, S12, S21, S22 defined by (4.2) satisfy

S21(ζ ) = −S12(−ζ ), S22(ζ ) = −S11(−ζ ). (5.11b)
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Using (5.11b), (5.9) and (5.5), we find that

M1(ζ ) = −S11(ζ )S12(ζ )h1(ζ ) − (S11(ζ )S22(ζ ) + S12(ζ )S21(ζ ))h(ζ )

− S21(ζ )S22(ζ )h2(ζ ) + S22(ζ )S21(ζ )h1(−ζ ) + (S11(ζ )S22(ζ )

+ S12(ζ )S21(ζ ))h(−ζ ) + S12(ζ )S11(ζ )h2(−ζ ). (5.12)

In accordance with (5.12), the equality D(ζ, t) = S11(ζ )S22(ζ ) − S12(ζ )S21(ζ ) satisfies the
equation

∂D(ζ, t)

∂t
+ 2π(iζ )M1(ζ )[D(ζ, t) − 1] = 0.

Owing to the condition D(ζ, t) = 1 at t = 0 there follows the identity D(ζ, t) ≡ 1 for all
t > 0. Thus, the consistency of equality (4.3) with system (4.7) is proved.

6. Conclusion

By means of the reduced AKNS eigenvalue problem with r = q which has no discrete
eigenvalue, we construct the mKdVHWS. We propose a method to find the evolution equation
of the eigenfunction corresponding to the mKdVHWS and further to determine the evolution
equation for scattering data, which enables us to solve the mKdVHWS by inverse scattering
transformation. Compared with the method for determining the evolution equation for
scattering data in [2, 3], our approach is quite natural and simple.

It should be noted that the reduced AKNS spectral problem for r = −q may have a discrete
eigenvalue. In this case, the right-hand side of equation (2.9a) needs to be supplemented by
the sum of square eigenfunctions of (2.9b) corresponding to the discrete eigenvalue. We shall
show in the forthcoming paper that the mKdV hierarchy with these two kinds of source can
also be integrated by inverse scattering transformation.
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